Stretch-activated channel activation promotes early afterdepolarizations in rat ventricular myocytes under oxidative stress.
نویسندگان
چکیده
Mechanical stretch and oxidative stress have been shown to prolong action potential duration (APD) and produce early afterdepolarizations (EADs). Here, we developed a simulation model to study the role of stretch-activated channel (SAC) currents in triggering EADs in ventricular myocytes under oxidative stress. We adapted our coupling clamp circuit so that a model ionic current representing the actual SAC current was injected into ventricular myocytes and added as a real-time current. This current was calculated as I(SAC) = G(SAC) * (V(m) - E(SAC)), where G(SAC) is the stretch-activated conductance, V(m) is the membrane potential, and E(SAC) is the reversal potential. In rat ventricular myocytes, application of G(SAC) did not produce sustained automaticity or EADs, although turn-on of G(SAC) did produce some transient automaticity at high levels of G(SAC). Exposure of myocytes to 100 microM H(2)O(2) induced significant APD prolongation and increase in intracellular Ca(2+) load and transient, but no EAD or sustained automaticity was generated in the absence of G(SAC). However, the combination of G(SAC) and H(2)O(2) consistently produced EADs at lower levels of G(SAC) (2.6 +/- 0.4 nS, n = 14, P < 0.05). Pacing myocytes at a faster rate further prolonged APD and promoted the development of EADs. SAC activation plays an important role in facilitating the development of EADs in ventricular myocytes under acute oxidative stress. This mechanism may contribute to the increased propensity to lethal ventricular arrhythmias seen in cardiomyopathies, where the myocardium stretch and oxidative stress generally coexist.
منابع مشابه
Irregularly appearing early afterdepolarizations in cardiac myocytes: random fluctuations or dynamical chaos?
Irregularly occurring early afterdepolarizations (EADs) in cardiac myocytes are traditionally hypothesized to be caused by random ion channel fluctuations. In this study, we combined 1), patch-clamp experiments in which action potentials were recorded at different pacing cycle lengths from isolated rabbit ventricular myocytes under several experimental conditions inducing EADs, including oxidat...
متن کاملT-type calcium channels are regulated by hypoxia/reoxygenation in ventricular myocytes.
Low-voltage-activated calcium channels are reexpressed in ventricular myocytes in pathological conditions associated with hypoxic episodes, but a direct relation between oxidative stress and T-type channel function and regulation in cardiomyocytes has not been established. We aimed to investigate low-voltage-activated channel regulation under oxidative stress in neonatal rat ventricular myocyte...
متن کاملOxidative-stress-induced afterdepolarizations and calmodulin kinase II signaling.
In the heart, oxidative stress caused by exogenous H(2)O(2) has been shown to induce early afterdepolarizations (EADs) and triggered activity by impairing Na current (I(Na)) inactivation. Because H(2)O(2) activates Ca(2+)/calmodulin kinase (CaMK)II, which also impairs I(Na) inactivation and promotes EADs, we hypothesized that CaMKII activation may be an important factor in EADs caused by oxidat...
متن کاملCellular Biology Oxidative Stress–Induced Afterdepolarizations and Calmodulin Kinase II Signaling
In the heart, oxidative stress caused by exogenous H2O2 has been shown to induce early afterdepolarizations (EADs) and triggered activity by impairing Na current (INa) inactivation. Because H2O2 activates Ca 2 /calmodulin kinase (CaMK)II, which also impairs INa inactivation and promotes EADs, we hypothesized that CaMKII activation may be an important factor in EADs caused by oxidative stress. U...
متن کاملConstitutively active adenosine monophosphate-activated protein kinase regulates voltage-gated sodium channels in ventricular myocytes.
BACKGROUND Some PRKAG2 mutations in the human gene encoding for the gamma-subunit of the adenosine monophosphate-activated protein kinase (AMPK) recently have been shown to cause rhythm disturbances (often fatal) in affected patients. METHODS AND RESULTS Rat ventricular myocytes were infected with an adenoviral vector designed to express a truncated constitutively active mutant (T172D) of the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 296 5 شماره
صفحات -
تاریخ انتشار 2009